Overslaan en naar de inhoud gaan
  • Nederlands
  • English

Internet search

Menu
  • Over NIOO
    • Over ons
    • Het gebouw
    • Geschiedenis
  • Actueel
    • Nieuws
    • Persberichten
    • Agenda
  • Onderzoek
    • Onderzoeksthema's
    • Publicaties
    • Datasets
    • Faciliteiten
    • Klimaat
  • Afdelingen
    • Aquatische ecologie
    • Dierecologie
    • Microbiële ecologie
    • Terrestrische ecologie
    • Overige
  • Maatschappij
    • Ecologie en maatschappij
    • Citizen Science
    • Educatieve info
    • Inspiratielezing
  • Werken & leren
    • Vacatures
  • Contact
    • Adres en route
    • Medewerkers
afbeelding van Paul  Bodelier

Dr. Paul Bodelier

Researcher

Microbial Ecology


Research expertise
  • Biogeochemistry of wetlands
  • General microbial ecology
  • Methane cycling
  • Stable isotopes

  • Page last updated: 30-04-2021

    • CV
    • Groepen
    • Projecten
    • Projecten
    • Samenwerkingen
    • Wetenschappelijke publicaties
    • Populair-wetenschappelijke publicaties
    • Nevenfuncties

     

     

    Current Research

    Microbial communities are at the very basis of life on earth, catalyzing biogeochemical reactions driving global nutrient cycles. Thereby, microbes have a crucial role in many ecosystem services like provision of food, good climate as well clean water. However, our knowledge on how specific microbes, their traits and the functions they catalyse are connected to these ecosystem services is still rudimentary. In the Bodelier group we aim at connecting microbial identity to functioning in lab and field settings to elucidate the role of microbial diversity and traits in regulating important ecosystem processes like greenhouse gas emission from terrestrial and aquatic ecosystems. The work in our group links to the NIOO themes chemical communic​ation, microbiomes and global change.

    Curriculum vitae (short version)

    Education

    MSc degree: Biology, Ecology and Microbiology (supervisors Prof. Dr. C.W.P.M. Blom and Prof. Dr. H.J. Laanbroek), University of Nijmegen, 1991.
    PhD degree: Thesis: Nitrification and denitrification in the rhizosphere of Glyceria maxima: “The plant gives..the plant takes”.  (Promotors Prof. Dr. C.W.P.M. Blom and Prof. Dr. H.J. Laanbroek), University of Nijmegen, 1997.

    Research Interests

    Functional Ecology of microbial communities involved in biogeochemical cycles in terrestrial and aquatic ecosystems. The main research topics addressed are:

    • The role of microbial diversity, community composition and microbial traits in geochemical cycling.
    • The role of microbial diversity, community composition and traits in resistance and resilience against perturbations.
    • Impact of environmental drivers (e.g. agricultural practices, flooding, climate change, grazing etc.) on GHG fluxes from terrestrial and aquatic ecosystems.
    • Ecology of methane cycling microbes.
    • The importance of methane as energy source in aquatic foodwebs.
    • The exploitation of microbial communities for benefit of the society

    Professional results

    (Co) authorship of 100 papers in refereed journals of which 3 in Nature and 1 in PNAS, 7 book chapters, 1 Ebook, supervisor of 8completed PhD theses. H index = 38 (WOS), 46 (Google Scolar).  Researcher ID: http://www.researcherid.com/rid/A-9591-2011. Orcid: http://orcid.org/0000-0002-5757-5572

    Academic functions

    1991 – 1992        Research assistant, Netherlands Institute of Ecology, Centre for Terrestrial Ecology, Heteren, The Netherlands.

    1992 – 1997        PhD student, Netherlands Institute of Ecology, Centre for Terrestrial Ecology (Heteren, The Netherlands).

    1997 – 1999        Post-doctoral research fellow, Max-Planck Institute for Terrestrial Microbiology Marburg, Germany.

    1999 – 2007        Post-doctoral research fellow, Netherlands Institute of Ecology, Centre for Limnology Nieuwersluis, the Netherlands.

    2008 –                 Senior Researcher Netherlands Institute of Ecology, the Netherlands.

    Editorial activities

    • Editorial board member of Applied and Environmental Microbiology 
    • Section Editor of Plant and Soil.
    • Editir in Chief Frontiers in Terrestrial Microbiology.
    • Editorial Board of the ISME Journal.

    For an extended cv see 

    Downloads

    • CV_September_2019.pdf

      PDF icon CV_September_2019.pdf
    OC/OR
    Read more
    BE-Basic: Biogeochemical Indicator tools for assessing pollution of water bodies and sediments.
    This project aims to develop monitoring tools to assess environmental impact invoked by bio-based agriculture, for example changes due to agricultural run-off in adjacent water bodies and sediments or exposure to pesticides. By screening a large set of ditches covering gradients in nutrient...Read more
    BE-Basic SURESUPPORT. Towards a quick decision SUPPORT tool for SUstainable use of harvest RESidues.
    Worldwide, erosion of agricultural soils is a very serious issue leading to loss of organic matter (OM) and associated soil functions leading to lower crop yields. However, soil quality and soil organic matter levels have to be secured which may be achieved through returning biomass from residues...Read more
    LifeMOB: Unraveling of Life Strategies and Traits of Methane-Oxidizing Bacteria using a proteomic approach.
    The dynamics of different groups of methane-oxidizing bacteria (MOB) are central to predicting variability in methane emissions, yet their quantitative responses to environmental conditions are still poorly understood. Here, we hypothesize that methane concentration, nitrogen and phosphorus...Read more
    CCC: Clever Cover cropping. Synergistic Mixtures for Sustainable Soils
    Since recently, Dutch farmers are required to grow cover crops in mixtures of at least two plant species. Cleverly chosen species mixtures can support greater inputs into the soil C reservoir, driving increases in soil N and P, and reduce pathogen pressure on the main crop. In this project we will...Read more
    Icelandic grassland soils dominated by ammonia-oxidizing archaea, or not?
    In the nitrogen-limited soils of Grændalur valley on Iceland, thaumarchaea dominated the process of ammonia oxidation. Ammonia-oxidizing betaproteobacteria came only to the fore in microcosms after addition of ammonium. Since this nitrogen-limited situation in the field might be due to the...Read more
    The zooplankton-microbiome (MicroZoo): beyond microbe-host associations
    Zooplankton is a crucial component of aquatic food webs. Microbes colonizing zooplankton species have been proposed to provide numerous ecosystem services including nutrient acquisition, stress protection, detoxification, and habitat provision but can also affect lake biogeochemistry by catalyzing...Read more
    VolMob: Interactions between methanotrophs and heterotrophs mediated by volatile compounds
    Methanotrophic bacteria are crucial in the regulation of methane concentration in the atmosphere and therefore for regulating our climate. Despite all research efforts there is still little understanding of the role of biological interaction on the functioning of methane oxidizers. In the VolMob...Read more
    SmartResidue
    Methane is a potent greenhouse gas and accounts for up to 17% of global warming according to the IPCC. Agricultural soils have always been regarded as a methane source, but recent research by the Bodelier group has shown that in laboratory conditions, these soils are capable of (circum-)atmospheric...Read more

    Running projects

    Functional Ecology of methane oxidizing bacteria

    Methane oxidizing bacteria (MOB) utilize methane as their carbon and energy source. They perform this process in many ecosystems (soils, sediments lakes, permafrost etc) thereby reducing the emission of this greenhouse gas to the atmosphere. We study MOB in the lab as well as in the field. One of the most recent findings was the strong positive stimulation of MOB by other non-methanotrophic bacteria mediated by volatile compounds. We used special incubations chambers and a volatolomics approach to perform these confrontation assays. We are performing experiments to verify mechanisms of these interactions, but results indicate an as yet unexplored mechanisms of control of major biogeochemical cycles.

    Microbiomes of Zooplankton   

    Zooplankton is a crucial component of aquatic food webs. It is essential for keeping the water column clear, which is important for the presence of aquatic plants and animals. Like plants and higher animals, zooplankton hosts a rich community of microbes. Colonization of zooplankton species by microbes has been proposed to provide numerous ecosystem services including nutrient acquisition, stress protection, detoxification, and habitat provision. Next to this, the provision of a “sessile” mode of life of microbes on zooplankton surfaces may affect lake biogeochemistry by catalyzing important biogeochemical reactions (i.e. DOC conversions, methane production and consumption, nitrogen fixation, assimilating ammonia and phosphorus). In a project funded by the NIOO strategic fund, we combine forces with the department of Aquatic Ecology to explore the microbiomes of Zooplankton and its role for functioning of the animals as well as for aquatic biogeochemistry. Exploring of Polish lakes, a long-term mesocsosm experiment in Denmark as well as chemostat experiments performed at NIOO, it is already obviously that zooplankton species contain a very specific microbiome, very different from the surrounding water. Future experiments focus on elucidating the mechanisms and functional implications of these differences.

    Smart residue applications to minimize GHG emissions from agricultural soils

    Agriculture is one of the most important sources of the greenhouse gasses methane and nitrous oxide. To make agriculture more sustainable, emission shave to be reduced and soil degradation, loss of biodiversity and inefficient nutrient use has to be improved. We demonstrated that application of organic residues improved uptake of methane by agricultural soils, turning these soils even into sinks of GHG. In 3 projects we develop strategies to improve the GHG balance of agricultural soils by applying mixes of organic and mineral bio-based residues (financed by the Deutsche Forschungs Gesellschaft, DFG), by using mixes of cover crops to improve soil quality (Netherlands Organization for Scientific Research, NWO) and by using compost to improve uptake of atmospheric methane by agricultural soils (NWO-TTW, Smartresidue). 

     

    Running projects

    Functional Ecology of methane oxidizing bacteria

    Methane oxidizing bacteria (MOB) utilize methane as their carbon and energy source. They perform this process in many ecosystems (soils, sediments lakes, permafrost etc) thereby reducing the emission of this greenhouse gas to the atmosphere. We study MOB in the lab as well as in the field. One of the most recent findings was the strong positive stimulation of MOB by other non-methanotrophic bacteria mediated by volatile compounds. We used special incubations chambers and a volatolomics approach to perform these confrontation assays. We are performing experiments to verify mechanisms of these interactions, but results indicate an as yet unexplored mechanisms of control of major biogeochemical cycles.

    Microbiomes of Zooplankton   

    Zooplankton is a crucial component of aquatic food webs. It is essential for keeping the water column clear, which is important for the presence of aquatic plants and animals. Like plants and higher animals, zooplankton hosts a rich community of microbes. Colonization of zooplankton species by microbes has been proposed to provide numerous ecosystem services including nutrient acquisition, stress protection, detoxification, and habitat provision. Next to this, the provision of a “sessile” mode of life of microbes on zooplankton surfaces may affect lake biogeochemistry by catalyzing important biogeochemical reactions (i.e. DOC conversions, methane production and consumption, nitrogen fixation, assimilating ammonia and phosphorus). In a project funded by the NIOO strategic fund, we combine forces with the department of Aquatic Ecology to explore the microbiomes of Zooplankton and its role for functioning of the animals as well as for aquatic biogeochemistry. Exploring of Polish lakes, a long-term mesocsosm experiment in Denmark as well as chemostat experiments performed at NIOO, it is already obviously that zooplankton species contain a very specific microbiome, very different from the surrounding water. Future experiments focus on elucidating the mechanisms and functional implications of these differences.

    Smart residue applications to minimize GHG emissions from agricultural soils

    Agriculture is one of the most important sources of the greenhouse gasses methane and nitrous oxide. To make agriculture more sustainable, emission shave to be reduced and soil degradation, loss of biodiversity and inefficient nutrient use has to be improved. We demonstrated that application of organic residues improved uptake of methane by agricultural soils, turning these soils even into sinks of GHG. In 3 projects we develop strategies to improve the GHG balance of agricultural soils by applying mixes of organic and mineral bio-based residues (financed by the Deutsche Forschungs Gesellschaft, DFG), by using mixes of cover crops to improve soil quality (Netherlands Organization for Scientific Research, NWO) and by using compost to improve uptake of atmospheric methane by agricultural soils (NWO-TTW, Smartresidue). 

     

    Collaborations

     

    National

    • Soil Biology, WUR (https://www.wur.nl/en/Research-Results/Chair-groups/Environmental-Sciences/Soil-Biology-Group.htm)
    • Crops System Analyses, WUR (https://www.wur.nl/en/Research-Results/Chair-groups/Plant-Sciences/Centre-for-Crop-Systems-Analysis.htm)
    • Agrifirm (https://www.agrifirm.nl/)
    • Van Dinther-Smemo (https://www.vandintersemo.nl/nl)
    • Joordens Zaden (https://www.joordens.com/)
    • Environmental Technology, WUR (https://www.wur.nl/en/Research-Results/Chair-groups/Agrotechnology-and-Food-Sciences/Environmental-Technology.htm)
    • Attero (https://www.attero.nl/)
    • Vereninging afval bedrijven (https://www.verenigingafvalbedrijven.nl/)
    • Wageningen Plant Research Plant Sciences WUR (https://www.wur.nl/nl/Onderzoek-Resultaten/Onderzoeksinstituten/plant-research.htm)
    • Bioclear Earth (https://bioclearearth.nl/)
    • MVH Consult nv (https://www.mvhconsult.nl/nl-nl/)
    • Natural Soil Improvement (http://www.tripleee.nl/natural-soil-improvement/)
    • KIWA Oesterbaai (https://www.kiwaoesterbaai.com/)
    • KCPK (https://www.kcpk.nl/)
    • Grondslag (https://www.grondslag.nl/)
    • Waterschap Drentse Overijsselse Delta (https://www.wdodelta.nl/)
    • Systems Biology, VU Amsterdam (https://research.vu.nl/en/persons/rob-van-spanning)
    • Aquatic Ecology and Environmental Biology, RU, Nijmegen (https://www.ru.nl/science/aquatic/people-research/assistant-professors/annelies-veraart/)
    • Ecology and Biodiversity, UU (https://www.uu.nl/medewerkers/organogram/BETA/84/377/410)

     

     

    International

    • University of Bonn, Claudia Knief (https://www.biosc.de/knief_en)
    • Institute of Soil Science, Chinese Academy of Science, Nanjing. Prof. Zhongjun Jia (https://www.researchgate.net/profile/Zhongjun_Jia)
    • University of Zürich, Pascal Niklaus (https://www.ieu.uzh.ch/en/staff/member/niklaus_pascal.html)
    • Max-Planck für terrestrische mikrobiologie, Marburg, Germany. Dr. Werner Liesack, dr Timo Glatter (https://www.mpi-marburg.mpg.de/erb)
    • Adam Mickiewicz University in Poznan. Dr. Slawek Cerbin (http://hydro.amu.edu.pl/en/staff/assistant-professors/dr-slawomir-cerbin/?doing_wp_cron=1569593538.6078848838806152343750)
    • Centro de energia nuclear na agricultura. Prof Tsai (http://www.cena.usp.br/tsai-siu-mui)

     

      2021

    • Bento, M. D. S., Barros, D. J., Araújo, M. G. D. S., Da Róz, R., Carvalho, G. A., Braga do Carmo, J., Toppa, R. H., Neu, V., Forsberg, B. R., Bodelier, P., Tsai, S. M., & Navarrete, A. A. (2021). Active methane processing microbes and the disproportionate role of NC10 phylum in methane mitigation in Amazonian floodplains. Biogeochemistry, 156, 293-317. https://doi.org/10.1007/s10533-021-00846-z
    • Costa, O. Y. A., Meima-Franke, M., & Bodelier, P. (2021). Complete and Draft Genome Sequences of Aerobic Methanotrophs Isolated from a Riparian Wetland. Microbiology Resource Announcements, 10(9), [e01438-20]. https://doi.org/10.1128/MRA.01438-20
    • van Dijk, H., Kaupper, T., Bothe, C., Lee, H. J., Bodelier, P., Horn, M. A., & Ho, A. (2021). Discrepancy in exchangeable and soluble ammonium-induced effects on aerobic methane oxidation: a microcosm study of a paddy soil. Biology and Fertility of Soils, 57, 873–880. https://doi.org/10.1007/s00374-021-01579-9
    • Brenzinger, K., Costa, O. Y. A., Ho, A., Koorneef, G., Robroek, B. J. M., Molenaar, D., Korthals, G., & Bodelier, P. (2021). Steering microbiomes by organic amendments towards climate-smart agricultural soils. Biology and Fertility of Soils, 57, 1053–1074. https://doi.org/10.1007/s00374-021-01599-5
    • Colina, M., Meerhoff, M., Pérez, G., Veraart, A., Bodelier, P., van der Horst, A., & Kosten, S. (2021). Trophic and non-trophic effects of fish and macroinvertebrates on carbon emissions. Freshwater Biology, 66(9), 1831-1845. https://doi.org/10.1111/fwb.13795
    • Cheng, X-Y., Liu, X-Y., Wang, H-M., Su, C-T., Zhao, R., Bodelier, P., Wang, W-Q., Ma, L-Y., & Lu, X-L. (2021). USCγ Dominated Community Composition and Cooccurrence Network of Methanotrophs and Bacteria in Subterranean Karst Caves. Microbiology spectrum, 9(1), [e00820-21]. https://doi.org/10.1128/Spectrum.00820-21
    • 2020

    • Orama, N. J., van Groeningen, J. W., Bodelier, P., Brenzinger, K., Cornelissen, J. H. C., De Deyn, G., & Abalos, D. (2020). Can flooding-induced greenhouse gas emissions be mitigated by trait-based plant species choice? Science of the Total Environment, 727(20 July), [138476]. https://doi.org/10.1016/j.scitotenv.2020.138476
    • Zheng, Y., Hu, X., Jia, Z., Bodelier, P., Guo, Z., Zhang, Y., Li, F., Li, X., & He, P. (2020). Co-occurrence patterns among prokaryotes across an age gradient in pit mud of Chinese strong-flavor liquor. Canadian Journal of Microbiology, 66(9), 495–504. https://doi.org/10.1139/cjm-2020-0012
    • Drost, S. M., Rutgers, M., Wouterse, M., De Boer, W., & Bodelier, P. (2020). Decomposition of mixtures of cover crop residues increases microbial functional diversity. Geoderma, 361, [114060]. https://doi.org/10.1016/j.geoderma.2019.114060
    • Zhang, L., Dumont, M. G., Bodelier, P. L. E., Adams, J. M., He, D., & Chu, H. (2020). DNA stable-isotope probing highlights the effects of temperature on functionally active methanotrophs in natural wetlands. Soil Biology & Biochemistry, 149, [107954]. https://doi.org/10.1016/j.soilbio.2020.107954
    • Bodelier, P., & Hallin, S. (2020). Grand challenges in Terrestrial Microbiology: moving on from a decade of progress in microbial biogeochemistry: SPECIALTY GRAND CHALLENGE ARTICLE. Frontiers in Microbiology, 11, [981]. https://doi.org/10.3389/fmicb.2020.00981
    • Samad, M. S., Lee, H. J., Cerbin, S., Meima-Franke, M., & Bodelier, P. (2020). Niche Differentiation of Host-associated Pelagic Microbes and Their Potential Contribution to Biogeochemical Cycling in Artificially Warmed Lakes. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00582
    • Oram, N. J., De Deyn, G., Bodelier, P., Cornelissen, J. H. C., van Groenigen, J. W., & Abalos, D. (2020). Plant community flood resilience in intensively managed grasslands and the role of the plant economic spectrum. Journal of Applied Ecology, 57(8), 1524-1534. https://doi.org/10.1111/1365-2664.13667
    • Ho, A., Mendes, L. W., Lee, H. J., Kaupper, T., Mo, Y., Poehlein, A., Bodelier, P., Jia, Z., & Horn, M. A. (2020). Response of a methane-driven interaction network to stressor intensification. FEMS Microbiology Ecology, 96(10), [fiaa180]. https://doi.org/10.1093/femsec/fiaa180
    • 2019

    • van der Waals, M., Plugge, C. M., Meima-Franke, M., de Waard, P., Bodelier, P. L. E., Smidt, H., & Gerritse, J. (2019). Ethyl tert-butyl ether (EtBE) degradation by an algal-bacterial culture obtained from contaminated groundwater. Water Research, 148(January), 314-323. https://doi.org/10.1016/j.watres.2018.10.050
    • Bodelier, P. L. E., Pérez, G., Veraart, A. J., & Krause, S. (2019). Methanotroph Ecology, Environmental distribution and functioning. In E. Y. Lee [Ed.], Methanotrophs: Microbiology Fundamentals and Biotechnological Applications (Microbiology Monographs MICROMONO; Vol. 32). Springer. https://doi.org/10.1007/978-3-030-23261-0_1
    • Ghashghavi, M., Belova, S., Bodelier, P. L. E., Dedysh, S., Kox, M. A. R., Speth, D., Frenzel, P., Jetten, M., Lücker, S., & Lüke, C. (2019). Methylotetracoccus oryzae Strain C50C1 Is a Novel Type Ib Gammaproteobacterial Methanotroph Adapted to Freshwater Environments. mSphere, 4, [e00631-18]. https://doi.org/10.1128/mSphere.00631-18
    • Maarastawi, S. A., Frindte, K., Bodelier, P. L. E., & Knief, C. (2019). Rice straw serves as additional carbon source for rhizosphere microorganisms and reduces root exudate consumption. Soil Biology & Biochemistry, 135(August), 235-238. https://doi.org/10.1016/j.soilbio.2019.05.007
    • Ho, A., Lee, H. J., Reumer, M. R., Meima-Franke, M., Raaijmakers, C. E., Zweers, A. J., De Boer, W., van der Putten, W. H., & Bodelier, P. L. E. (2019). Unexpected role of canonical aerobic methanotrophs in upland agricultural soils. Soil Biology & Biochemistry, 131(April), [1-8]. https://doi.org/10.1016/j.soilbio.2018.12.020
    • 2018

    • Stötter, T., Bastviken, D., Bodelier, P. L. E., Hardenbroek, M. V., Rinta, P., Schilder, J., Schubert, C. J., & Heiri, O. (2018). Abundance and δ13C values of fatty acids in lacustrine surface sediments: Relationships with in-lake methane concentrations. Quaternary Science Reviews, 191, 337 - 347. https://doi.org/10.1016/j.quascirev.2018.04.029
    • Krause, S., Meima-Franke, M., Veraart, A. J., Ren, G., Ho, A., & Bodelier, P. L. E. (2018). Environmental legacy contributes to the resilience of methane consumption in a laboratory microcosm system. Scientific Reports, 9, [8862]. https://doi.org/10.1038/s41598-018-27168-9
    • Reumer, M., Harnisz, M., Lee, H. J., Reim, A., Grunert, O., Putkinen, A., Fritze, H., Bodelier, P. L. E., & Ho, A. (2018). Impact of peat mining, and restoration on methane turnover potentials and methane-cycling microorganisms in a northern bog. Applied and Environmental Microbiology, 84(3), [e02218-17]. https://doi.org/10.1128/AEM.02218-17
    • Veraart, A. J., Garbeva, P. V., van Beersum, F., Ho, A., Hordijk, C. A., Meima-Franke, M., Zweers, A. J., & Bodelier, P. L. E. (2018). Living apart together – Bacterial volatiles influence methanotrophic growth and activity. ISME Journal, 12, 1163-1166. https://doi.org/10.1038/s41396-018-0055-7
    • Heijboer, A., de Ruiter, P. C., Bodelier, P. L. E., & Kowalchuk, G. A. (2018). Modulation of litter decomposition by the soil microbial food web under influence of land use change. Frontiers in Microbiology, 9, [02860]. https://doi.org/10.3389/fmicb.2018.02860
    • Brenzinger, K., Drost, S. M., Korthals, G. W., & Bodelier, P. L. E. (2018). Organic residue amendments to modulate greenhouse gas emissions from agricultural soils. Frontiers in Microbiology, 9, [3035]. https://doi.org/10.3389/fmicb.2018.03035
    • Schnyder, E., Bodelier, P. L. E., Hartmann, M., Henneberger, R., & Niklaus, P. A. (2018). Positive diversity-functioning relationships in model communities of methanotrophic bacteria. Ecology, 99(3), 714-723. https://doi.org/10.1002/ecy.2138
    • Wen, X., Unger, V., Jurasinski, G., Koebsch, F., Horn, F., Rehder, G., Sachs, T., Zak, D., Lischeid, G., Knorr, K-H., Böttcher, M. E., Winkel, M., Bodelier, P. L. E., & Liebner, S. (2018). Predominance of methanogens over methanotrophs in rewetted fens characterized by high methane emissions. Biogeosciences, 15, 6519-6536. https://doi.org/10.5194/bg-15-6519-2018
    • van Kruistum, H., Bodelier, P. L. E., Ho, A., Meima-Franke, M., & Veraart, A. J. (2018). Resistance and Recovery of Methane Oxidizing Communities depends on Stress Regime and History. Frontiers in Microbiology, 9, [01714]. https://doi.org/10.3389/fmicb.2018.01714
    • 2017

    • Ho, A., Ijaz, U. Z., Janssens, T., Ruijs, R., Kim, S. Y., De Boer, W., Termorshuizen, A. J., van der Putten, W. H., & Bodelier, P. L. E. (2017). Effects of bio-based residue amendments on greenhouse gas emission from agricultural soil are stronger than effects of soil type with different microbial community composition. Global Change Biology Bioenergy, 9(12), 1707-1720. https://doi.org/10.1111/gcbb.12457
    • Steenbergh, A. K., Veraart, A. J., Ho, A., & Bodelier, P. L. E. (2017). Microbial Ecosystem Functions in Wetlands Under Disturbance. In K. Tate [Ed.], Microbial Biomass: A Paradigm Shift in Terrestrial Biochemistry World Scientific. http://www.worldscientific.com/worldscibooks/10.1142/q0038
    • Ho, A., Di Lonardo, P., & Bodelier, P. L. E. (2017). Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiology Ecology, 93(3), [fix006]. https://doi.org/10.1093/femsec/fix006
    • Daebeler, A., Bodelier, P. L. E., Hefting, M. M., Rütting, T., & Laanbroek, H. J. (2017). Soil warming and fertilization altered rates of nitrogen transformation processes and selected for adapted ammonia-oxidizing archaea in sub-arctic grassland soil. Soil Biology & Biochemistry, 107, 114-124. https://doi.org/10.1016/j.soilbio.2016.12.013
    • Schilder, J., Van Hardenbroek, M., Bodelier, P. L. E., Kirilova, E. P., Leuenberger, M., Lotter, A. F., & Heiri, O. (2017). Trophic state changes can affect the importance of methane-derived carbon in aquatic food webs. Proceedings of the Royal Society B-Biological Sciences, 284(1857), [278]. https://doi.org/10.1098/rspb.2017.0278
    • 2016

    • Ho, A., Angel, R., Veraart, A. J., Daebeler, A., Jia, Z., Kim, S. Y., Kerckhof, F. M., Boon, N., & Bodelier, P. L. E. (2016). Biotic interactions in microbial communities as modulators of biogeochemical processes: Methanotrophy as a model system. Frontiers in Microbiology, 7, [1285]. https://doi.org/10.3389/fmicb.2016.01285
    • Cai, Y., Yan, Z., Bodelier, P. L. E., Conrad, R., & Jia, Z. (2016). Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nature Communications, 7, [11728]. https://doi.org/10.1038/ncomms11728
    • Ho, A., van den Brink, E., Reim, A., Krause, S., & Bodelier, P. L. E. (2016). Recurrence and frequency of disturbance have cumulative effect on methanotrophic activity, abundance, and community structure. Frontiers in Microbiology, 6, [01493]. https://doi.org/10.3389/fmicb.2015.01493
    • 2015

    • Daebeler, A., Bodelier, P. L. E., Hefting, M. M., & Laanbroek, H. J. (2015). Ammonia-limited conditions cause of Thaumarchaeal dominance in volcanic grassland soil. FEMS Microbiology Ecology, 91(3), [fiv014]. https://doi.org/10.1093/femsec/fiv014
    • Veraart, A. J., Steenbergh, A. K., Ho, A., Kim, S. Y., & Bodelier, P. L. E. (2015). Beyond nitrogen: the importance of phosphorus for CH4 oxidation in soils and sediments. Geoderma, 259-260(December), 337-346. https://doi.org/10.1016/j.geoderma.2015.03.025
    • Kim, S. Y., Veraart, A., Meima-Franke, M., & Bodelier, P. (2015). Combined effects of carbon, nitrogen and phosphorus on CH4 production and denitrification in wetland sediments. Geoderma, Online, 354-361. https://doi.org/10.1016/j.geoderma.2015.03.015
    • Krause, S., Niklaus, P. A., Morcillo, S. B., Meima-Franke, M., Lüke, C., Reim, A., & Bodelier, P. L. E. (2015). Compositional and functional stability of aerobic methane consuming communities in drained and rewetted peat meadows. FEMS Microbiology Ecology, 91(11), [fiv119]. https://doi.org/10.1093/femsec/fiv119
    • Ho, A., & Bodelier, P. (2015). Diazotrophic methanotrophs in peatlands: the missing link? Plant and Soil, 389(1-2), 419-423. https://doi.org/10.1007/s11104-015-2393-9
    • Henneberger, R., Chiri, E., Bodelier, P. L. E., Frenzel, P., Luke, C., & Schroth, M. H. (2015). Field-scale tracking of active methane-oxidizing communities in a landfill-cover soil reveals spatial and seasonal variability. Environmental Microbiology, 17(5), 1721-1737. https://doi.org/10.1111/1462-2920.12617
    • Ho, A., El-Hawwary, A. H. M., Kim, S. Y., Meima-Franke, M., & Bodelier, P. (2015). Manure-associated stimulation of soil-borne methanogenic activity in agricultural soils. Biology and Fertility of Soils, 51(4), 511-516. https://doi.org/10.1007/s00374-015-0995-2
    • Kim, P. J., Bodelier, P. L. E., & Lu, Y. (2015). Mechanisms controlling greenhouse gas emissions from soils. Geoderma, 259-260(December), 321-322. https://doi.org/10.1016/j.geoderma.2015.07.009
    • Robroek, B. J. M., Jassey, V. E. J., Kox, M. A. R., Berendsen, R. L., Mills, R. T. E., Cécillon, L., Puissant, J., Meima-Franke, M., Bakker, P. A. H. M., & Bodelier, P. (2015). Peatland vascular plant functional types affect methane dynamics by altering microbial community structure. Journal of Ecology, 103(4), 925-934. https://doi.org/10.1111/1365-2745.12413
    • Steenbergh, A., Bodelier, P., Hoogveld, H. L., Slomp, C. P., & Laanbroek, H. J. (2015). Phylogenetic characterization of phosphatase-expressing bacterial communities in Baltic Sea sediments. Microbes and Environments, 30(2), 192-195. [ME14074]. https://doi.org/10.1264/jsme2.ME14074
    • Bodelier, P. L. E. (2015). Sustainability: Bypassing the methane cycle: News & Views. Nature, 523(7562), 534-535. https://doi.org/10.1038/nature14633
    • Ho, A., Reim, A., Kim, S. Y., Meima-Franke, M., Termorshuizen, A. J., De Boer, W., Van der Putten, W. H., & Bodelier, P. L. E. (2015). Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application. Global Change Biology, 21(10), 3864-3879. https://doi.org/10.1111/gcb.12974
    • 2014

    • Kim, S. Y., Pramanik, P., Bodelier, P. L. E., & Kim, P. J. (2014). Cattle Manure Enhances Methanogens Diversity and Methane Emissions Compared to Swine Manure under Rice Paddy. PLoS One, 9(12), [e113593]. https://doi.org/10.1371/journal.pone.0113593
    • Zheng, Y., Huang, R., Wang, B., Bodelier, P. L. E., & Jia, Z. (2014). Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil. Biogeosciences, 11, 3353-3368. https://doi.org/10.5194/bg-11-3353-2014
    • Steenbergh, A. K., Bodelier, P. L. E., Slomp, C. P., & Laanbroek, H. J. (2014). Effect of redox conditions on bacterial community structure in Baltic Sea sediments with contrasting redox conditions. PLoS One, 9(3), [e92401]. https://doi.org/10.1371/journal.pone.0092401
    • Bodelier, P. L. E. (2014). Extraction Methods, Variability Encountered in. In K. E. Nelson [Ed.], Encyclopedia of Metagenomics Springer. https://doi.org/10.1007/978-1-4614-6418-1_132-3
    • Bodelier, P. L. E. (2014). Factors affecting methane efluxes from terrestrial ecosystems: editorial. Plant and Soil, (Virtual special issue nr 4). http://www.springer.com/life+sciences/agriculture?SGWID=0-10028-6-1472545-0
    • Bodelier, P. L. E., & Steenbergh, A. K. (2014). Interactions between methane and nitrogen cycling; current metagenomics studies and future trends. In D. Marco [Ed.], Metagenomics of the Microbial Nitrogen Cycle Caister Academic Press. http://www.horizonpress.com/n2
    • Bodelier, P. L. E., & Steenbergh, A. K. (2014). Interactions between methane and the nitrogen cycle in light of climate change. Current Opinion in Environmental Sustainability, 9-10(October), 26-36. https://doi.org/10.1016/j.cosust.2014.07.004
    • Daebeler, A., Bodelier, P. L. E., Yan, Z., Hefting, M. M., Jia, Z., & Laanbroek, H. J. (2014). Interactions between Thaumarchaea, Nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grassland soil. ISME Journal, 8, 2397-2410. https://doi.org/10.1038/ismej.2014.81
    • Bodelier, P. L. E. (2014). Microbial Ecosystems, Protection of. In K. E. Nelson [Ed.], Encyclopedia of Metagenomics Springer. https://doi.org/10.1007/978-1-4614-6418-1_133-3
    • Pan, Y., Abell, G. C. J., Bodelier, P. L. E., Meima-Franke, M., Sessitsch, A., & Bodrossy, L. (2014). Remarkable recovery and colonization behaviour of methane oxidizing bacteria in soil after disturbance is controlled by methane source only. Microbial Ecology, 68(2), 259-270. https://doi.org/10.1007/s00248-014-0402-9
    • Krause, S., Le Roux, X., Niklaus, P. A., van Bodegom, P. M., Lennon, J. T., Bertilsson, S. A., Grossart, H. P., Philippot, L., & Bodelier, P. L. E. (2014). Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Frontiers in Microbiology, 5, 251. https://doi.org/10.3389/fmicb.2014.00251
    • Krause, S., Van Bodegom, P. M., Cornwell, W. K., & Bodelier, P. L. E. (2014). Weak phylogenetic signal in physiological traits of methane-oxidizing bacteria. Journal of Evolutionary Biology, 27(6), 1240-1247. https://doi.org/10.1111/jeb.12401
    • 2013

    • Ho, A., Kerckhof, F. M., Luke, C., Reim, A., Krause, S., Boon, N., & Bodelier, P. L. E. (2013). Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environmental Microbiology Reports, 5(3), 335-345. https://doi.org/10.1111/j.1758-2229.2012.00370.x
    • Steenbergh, A. K., Bodelier, P. L. E., Heldal, M., Slomp, C. P., & Laanbroek, H. J. (2013). Does microbial stoichiometry modulate eutrophication of aquatic ecosystems? Environmental Microbiology, 15(5), 1572-1579. https://doi.org/10.1111/1462-2920.12042
    • Miletto, M., Bodelier, P. L. E., Ferdelman, F. G., Jørgensen, B. B., & Laanbroek, H. J. (2013). Effect of the aerenchymatous helophyte Glyceria maxima on the sulfate-reducing communities in two contrasting riparian grassland soils. Plant and Soil, 370(1-2), 73-87. https://doi.org/10.1007/s11104-013-1608-1
    • Van Duinen, G. A., Vermonden, K., Bodelier, P. L. E., Hendriks, A. J., Leuven, R. S. E. W., Middelburg, J. J., Van der Velde, G., & Verberk, W. C. E. P. (2013). Methane as a carbon source for the food web in raised bog pools. Freshwater Science, 32(4), 1260-1272. https://doi.org/10.1899/12-121.1
    • Belova, S. E., Kulichevskaya, I. S., Bodelier, P. L. E., & Dedysh, S. N. (2013). Methylocystis bryophila sp. nov., a Novel Facultatively Methanotrophic Bacterium from Acidic Sphagnum Peat, and Emended Description of the Genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993. International Journal of Systematic and Evolutionary Microbiology, 63(Pt_3), 1096-1104. https://doi.org/10.1099/ijs.0.043505-0
    • Danilova, O. V., Kulichevskaya, I. S., Rozova, O. N., Detkova, E. N., Bodelier, P. L. E., Trotsenko, Y. A., & Dedysh, S. N. (2013). Methylomonas paludis sp. nov., the first acid-tolerant member of the genus Methylomoas, from an acidic wetland. International Journal of Systematic and Evolutionary Microbiology, 63(Pt6), 2282-2289. https://doi.org/10.1099/ijs.0.045658-0
    • Bodelier, P. L. E. (2013). Microbial Impact on climate change: MIcrobes in climate models. FEMS Newsletter, 15. http://issuu.com/fems/docs/focus15_v04_final_version
    • Bodelier, P. L. E., Meima-Franke, M., Hordijk, C. A., Steenbergh, A. K., Hefting, M. M., Bodrossy, L., von Bergen, M., & Seifert, J. (2013). Microbial minorities modulate methane consumption through niche partitioning. ISME Journal, 7(11), 2214-2228. https://doi.org/10.1038/ismej.2013.99
    • Bodelier, P. L. E., & Dedysh, S. N. [Eds.] (2013). Microbiology of wetlands. (Frontiers Research Topics). Frontiers Media SA. https://doi.org/10.3389/978-2-88919-144-4
    • Bodelier, P. L. E., & Dedysh, S. N. (2013). Microbiology of wetlands. Frontiers in Microbiology, 4, 79. https://doi.org/10.3389/fmicb.2013.00079
    • Vissers, E. W., Blaga, C. I., Bodelier, P. L. E., Muyzer, G., Schleper, C., Sinninghe Damsté, J. S., Tourna, M., & Laanbroek, H. J. (2013). Seasonal and vertical distribution of putative ammonia-oxidizing thaumarchaeotal communities in an oligotrophic lake. FEMS Microbiology Ecology, 83(2), 515-526. https://doi.org/10.1111/1574-6941.12013
    • Krause, S., Meima-Franke, M., Hefting, M. M., & Bodelier, P. L. E. (2013). Spatial patterns of methanotrophic communities along a hydrological gradient in a riparian wetland. FEMS Microbiology Ecology, 86(1), 59-70. https://doi.org/10.1111/1574-6941.12091
    • Vissers, E. W., Anselmetti, F. S., Bodelier, P. L. E., Muyzer, G., Schleper, C., Tourna, M., & Laanbroek, H. J. (2013). Temporal and spatial coexistence of archaeal and bacterial amoA genes and gene transcripts in Lake Lucerne. Archaea, 2013, 289478. https://doi.org/10.1155/2013/289478
    • 2012

    • Daebeler, A., Abell, G. C. J., Bodelier, P. L. E., Bodrossy, L., Frampton, D. M., Hefting, M. M., & Laanbroek, H. J. (2012). Archaeal dominated ammonia-oxidizing communities in Icelandic grassland soils are moderately affected by long-term N fertilization and geothermal heating. Frontiers in Microbiology, 3, [00352]. https://doi.org/10.3389/fmicb.2012.00352
    • da Costa Martins, G., Henriques, I., Ribeiro, D. C., Correia, A., Bodelier, P. L. E., Cruz, J. V., Brito, A. G., & Nogueira, R. (2012). Bacterial diversity and geochemical profiles in sediments from eutrophic Azorean lakes. Geomicrobiology Journal, 29(8), 704-715. https://doi.org/10.1080/01490451.2011.619633
    • Knief, C., Dengler, V., Bodelier, P. L. E., & Vorholt, J. A. (2012). Characterization of Methylobacterium strains isolated from the phyllosphere and description of Methylobacterium longum sp nov. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 101(1), 169-183. https://doi.org/10.1007/s10482-011-9650-6
    • Kulichevskaya, I. S., Detkova, E. N., Bodelier, P. L. E., Rijpstra, W. I. C., Sinninghe Damsté, J. S., & Dedysh, S. N. (2012). Singulisphaera rosea sp. nov., a planctomycete from acidic Sphagnum peat, and emended description of the genus Singulisphaera. International Journal of Systematic and Evolutionary Microbiology, 62(1), 118-123. https://doi.org/10.1099/ijs.0.025924-0
    • Wang, J., Krause, S., Muyzer, G., Meima-Franke, M., Laanbroek, H. J., & Bodelier, P. L. E. (2012). Spatial patterns of iron- and methane-oxidizing bacterial communities in an irregularly flooded, riparian wetland. Frontiers in Microbiology, 3, [64]. https://doi.org/10.3389/fmicb.2012.00064
    • Bodelier, P. L. E., Bär-Gilissen, M. J., Meima-Franke, M., & Hordijk, C. A. (2012). Structural and functional response of methane-consuming microbial communities to different flooding regimes in riparian soils. Ecology and Evolution, 2(1), 106-127. https://doi.org/10.1002/ece3.34
    • 2011

    • Belova, S. E., Baani, M., Suzina, N. E., Bodelier, P. L. E., Liesack, W., & Dedysh, S. N. (2011). Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environmental Microbiology Reports, 3(1), 36-46. https://doi.org/10.1111/j.1758-2229.2010.00180.x
    • Dingemans, B. J. J., Bakker, E. S., & Bodelier, P. L. E. (2011). Aquatic herbivores facilitate the emission of methane from wetlands. Ecology, 92(5), 1166-1173. https://doi.org/10.1890/10-1297.1
    • Wang, J., Vollrath, S., Behrends, T., Bodelier, P. L. E., Muyzer, G., Den Oudsten, F., Meima-Franke, M., Cappellen, P., & Laanbroek, H. J. (2011). Distribution and diversity of gallionella-like neutrophilic iron oxidizers in a tidal freshwater marsh. Applied and Environmental Microbiology, 77(7), 2337-2344. https://doi.org/10.1128/AEM.02448-10
    • Siljanen, H. M. P., Saari, A., Krause, S., Lensu, A., Abell, G. C. J., Bodrossy, L., Bodelier, P. L. E., & Martikainen, P. J. (2011). Hydrology is reflected in the functioning and community composition of methanotrophs in the littoral wetland of a boreal lake. FEMS Microbiology Ecology, 75(3), 430-445. https://doi.org/10.1111/j.1574-6941.2010.01015.x
    • Bodelier, P. L. E. (2011). Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils. Current Opinion in Environmental Sustainability, 3(5), 379-388. https://doi.org/10.1016/j.cosust.2011.06.002
    • Steenbergh, A. K., Bodelier, P. L. E., Hoogveld, H. L., Slomp, C. P., & Laanbroek, H. J. (2011). Phosphatases relieve carbon limitation of microbial activity in Baltic Sea sediments along a redox-gradient. Limnology and Oceanography, 56(6), 2018-2026. https://doi.org/10.4319/lo.2011.56.6.2018
    • Murase, J., Hordijk, C. A., Tayasu, I., & Bodelier, P. L. E. (2011). Strain-specific incorporation of methanotrophic biomass into eukaryotic grazers in a rice field soil revealed by SIP-PLFA. FEMS Microbiology Ecology, 75(2), 284-290. https://doi.org/10.1111/j.1574-6941.2010.01007.x
    • Bodelier, P. L. E. (2011). Toward understanding, managing, and protecting microbial ecosystems. Frontiers in Microbiology, 2(80), 1-8. https://doi.org/10.3389/fmicb.2011.00080
    • 2010

    • Steenbergh, A. K., Meima, M., Kamst, M., & Bodelier, P. L. E. (2010). Biphasic kinetics of a methanotrophic community is a combination of growth and increased activity per cell. FEMS Microbiology Ecology, 71(1), 12-22. https://doi.org/10.1111/j.1574-6941.2009.00782.x
    • Van Hardenbroek, M., Heiri, O., Grey, J., Bodelier, P. L. E., Verbruggen, F., & Lotter, A. F. (2010). Fossil chironomid δ13C as a proxy for past methanogenic contribution to benthic food webs in lakes? Journal of Paleolimnology, 43(2), 235-245. https://doi.org/10.1007/s10933-009-9328-5
    • Pan, Y., Bodrossy, L., Frenzel, P., Hestnes, A-G., Krause, S., Lüke, C., Franke, M., Siljanen, H., Svenning, M. M., & Bodelier, P. L. E. (2010). Impacts of Inter- and Intralaboratory Variations on the Reproducibility of Microbial Community Analyses. Applied and Environmental Microbiology, 76(22), 7451-7458. https://doi.org/10.1128/AEM.01595-10
    • Coci, M., Nicol, G. W., Pilloni, G. N., Schmid, M., Kamst-van Agterveld, M. P., Bodelier, P. L. E., & Laanbroek, H. J. (2010). Quantitative assessment of ammonia-oxidizing bacterial communities in the epiphyton of submerged macrophytes in shallow lakes. Applied and Environmental Microbiology, 76(6), 1813-1821. https://doi.org/10.1128/AEM.01917-09
    • Miletto, M., Loeb, R., Antheunisse, A. M., Bodelier, P. L. E., & Laanbroek, H. J. (2010). Response of the sulfate-reducing community to the re-establishment of estuarine conditions in two contrasting soils: a mesocosm approach. Microbial Ecology, 59(1), 109-120. https://doi.org/10.1007/s00248-009-9614-9
    • Drigo, B., Pijl, A. S., Duyts, H., Kielak, A. M., Gamper, H. A., Houtekamer, M. J., Boschker, H. T. S., Bodelier, P. L. E., Whiteley, A. S., Van Veen, J. A., & Kowalchuk, G. A. (2010). Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 10938-10942. https://doi.org/10.1073/pnas.0912421107
    • 2009

    • Vissers, E. W., Bodelier, P. L. E., Muyzer, G., & Laanbroek, R. (2009). A nested PCR approach for improved recovery of archaeal 16S rRNA gene fragments from freshwater samples. FEMS Microbiology Letters, 298(2), 193-198. https://doi.org/10.1111/j.1574-6968.2009.01718.x
    • Bodelier, P. L. E., Bär-Gilissen, M. J., Hordijk, C. A., Sinninghe Damsté, J. S., Rijpstra, W. I. C., Geenevasen, J. A. J., & Dunfield, P. F. (2009). A reanalysis of phospholipid fatty acids as ecological biomarkers for methanotrophic bacteria. ISME Journal, 3(5), 606-617. https://doi.org/10.1038/ismej.2009.6
    • Wang, J., Muyzer, G., Bodelier, P. L. E., & Laanbroek, R. (2009). Diversity of iron oxidizers in wetland soils revealed by novel 16S rRNA primers targeting Gallionella-related bacteria. ISME Journal, 3(6), 715-725. https://doi.org/10.1038/ismej.2009.7
    • Vorob'ev, A. V., De Boer, W., Folman, L. B., Bodelier, P. L. E., Doronina, N. V., Suzina, N. E., Trotsenko, Y. A., & Dedysh, S. N. (2009). Methylovirgula ligni gen. nov., sp. nov., an obligately acidophilic, facultatively methylotrophic bacterium with a highly divergent mxaF gene. International Journal of Systematic and Evolutionary Microbiology, 59, 2538-2545. https://doi.org/10.1099/ijs.0.010074-0
    • Bodelier, P. L. E., Kamst, M., Meima-Franke, M., Stralis-Pavese, N., & Bodrossy, L. (2009). Whole community genome amplification (WCGA) leads to compositional bias in methane oxidizing communities as assessed by pmoA based microarray analyses and QPCR. Environmental Microbiology, 1(5), 434-441. https://doi.org/10.1111/j.1758-2229.2009.00066.x
    • Kulichevskaya, I. S., Baulina, O. I., Bodelier, P. L. E., Rijpstra, W. I. C., Sinninghe Damsté, J. S., & Dedysh, S. N. (2009). Zavarzinella formosa gen. nov., sp. nov., a novel stalked, Gemmata-like planctomycete from a Siberian peat bog. International Journal of Systematic and Evolutionary Microbiology, 59, 357-364. https://doi.org/10.1099/ijs.0.002378-0
    • 2008

    • Miletto, M., Loy, A., Antheunisse, A. M., Loeb, R., Bodelier, P. L. E., & Laanbroek, R. (2008). Biogeography of sulfate-reducing prokaryotes in river floodplains. FEMS Microbiology Ecology, 64(3), 395-406. https://doi.org/10.1111/j.1574-6941.2008.00490.x
    • Coci, M., Bodelier, P. L. E., & Laanbroek, R. (2008). Epiphyton as a niche for ammonia-oxidizing bacteria: detailed comparison with benthic and pelagic compartments in shallow freshwater lakes. Applied and Environmental Microbiology, 74(7), 1963-1971. https://doi.org/10.1128/AEM.00694-07
    • Sekido, T., Bodelier, P. L. E., Shoji, T., Suwa, Y., & Laanbroek, R. (2008). Limitations of the use of group-specific primers in real-time PCR as appear from quantitative analyses of closely related ammonia-oxidising species. Water Research, 42(4-5), 1093-1101. https://doi.org/10.1016/j.watres.2007.08.024
    • Kulichevskaya, I. S., Ivanova, A. O., Baulina, O. I., Bodelier, P. L. E., Sinninghe Damsté, J. S., & Dedysh, S. N. (2008). Singulisphaera acidiphila gen. nov., sp. nov., a non-filamentous, Isosphaera-like planctomycete from acidic northern wetlands. International Journal of Systematic and Evolutionary Microbiology, 58, 1186-1193. https://doi.org/10.1099/ijs.0.65593-0
    • Conrad, R., Klose, M., Noll, M., Kemnitz, D., & Bodelier, P. L. E. (2008). Soil type links microbial colonization of rice roots to methane emission. Global Change Biology, 14(3), 657-669. https://doi.org/10.1111/j.1365-2486.2007.01516.x
    • 2007

    • Mohanty, S. R., Bodelier, P. L. E., & Conrad, R. (2007). Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiology Ecology, 62(1), 24-31. https://doi.org/10.1111/j.1574-6941.2007.00370.x
    • Miletto, M., Bodelier, P. L. E., & Laanbroek, R. (2007). Improved PCR-DGGE for high resolution diversity screening of complex sulfate-reducing prokaryotic communities in soils and sediments. Journal of Microbiological Methods, 70(1), 103-111. https://doi.org/10.1016/j.mimet.2007.03.015
    • Deines, P., Bodelier, P. L. E., & Eller, G. (2007). Methane-derived carbon flows through methane-oxidizing bacteria to higher trophic levels in aquatic systems. Environmental Microbiology, 9(5), 1126-1134. https://doi.org/10.1111/j.1462-2920.2006.01235.x
    • Dunfield, P. F., Yurgey, A. Q., Senin, P., Smirnova, A. V., Stott, M. B., Hou, S., Ly, B., Saw, J. H., Zhou, Z., Ren, Y., Wang, J., Mountain, B. W., Crowe, M. A., Weatherby, T. M., Bodelier, P. L. E., Liesack, W., Feng, L., Wang, L., & Alam, M. (2007). Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature, 450(7171), 879-882. https://doi.org/10.1038/nature06411
    • Dedysh, S. N., Belova, S. E., Bodelier, P. L. E., Smirnova, K. V., Khmelenina, A., Chidthaisong, A., Trotsenko, Y. A., Liesack, W., & Dunfield, P. F. (2007). Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing signature fatty acids of type I methanotrophs. International Journal of Systematic and Evolutionary Microbiology, 57, 472-479. https://doi.org/10.1099/ijs.0.64623-0
    • Kulichevskaya, I. S., Ivanaova, A. O., Belova, S. E., Baulina, O. I., Bodelier, P. L. E., Rijpstra, W. I. C., Sinninghe-Damsté, J. S., Zavarin, G. A., & Dedysh, S. N. (2007). Schlesneria paludicola gen. nov., sp. nov., the first acidophilic member of the order Planctomycetales, from Sphagnum-dominated boreal wetlands. International Journal of Systematic and Evolutionary Microbiology, 57, 2680-2687. https://doi.org/10.1099/ijs.0.65157-0
    • 2006

    • Bodelier, P. L. E., Stomp, M., Santamaria, L., Klaassen, M. R. J., & Laanbroek, H. J. (2006). Animal-plant-microbe interactions: direct and indirect effects of swan foraging behavior modulate methane cycling in temperate shallow wetlands. Oecologia, 149(2), 233-244. https://doi.org/10.1007/s00442-006-0445-9
    • Mohanty, S. R., Bodelier, P. L. E., Floris, V., & Conrad, R. (2006). Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soil. Applied and Environmental Microbiology, 72(2), 1346-1354. https://doi.org/10.1128/AEM.72.2.1346-1354.2006
    • Bodelier, P. L. E., Frenzel, P., Drake, H., Hurek, T., Küsel, K., Lovell, C., Megonigal, P., Reinhold-Hurek, B., & Sorrell, B. (2006). Ecological Aspects of Microbes and Microbial Communities Inhabiting the Rhizosphere of Wetland Plants. In J. T. A. Verhoeven, B. Beltman, R. Bobbink, & D. F. Whigman [Eds.], Wetlands and Natural Resource Management (pp. 205-238). (Ecological Studies). Springer.
    • Knief, C., Kolb, S., Bodelier, P. L. E., Lipski, A., & Dunfield, P. F. (2006). The active methanotrophic community in hydromorphic soils changes in response to changing methane concentration. Environmental Microbiology, 8(2), 321-333. https://doi.org/10.1111/j.1462-2920.2005.00898.x
    • Vanparys, B., Bodelier, P. L. E., & De Vos, P. (2006). Validation of the correct start codon of norX/nxrX and universality of the norAXB/nxrAXB gene cluster in Nitrobacter species. Current Microbiology, 53(3), 255-257. https://doi.org/10.1007/s00284-006-0161-z
    • 2005

    • Coci, M., Riechmann, D., Bodelier, P. L. E., Stefani, S., Zwart, G., & Laanbroek, H. J. (2005). Effect of salinity on temporal and spatial dynamics of ammonia-oxidising bacteria from intertidal freshwater sediment. FEMS Microbiology Ecology, 53(3), 359-368. https://doi.org/10.1016/j.femsec.2005.01.016
    • Bodelier, P. L. E., Meima-Franke, M., Zwart, G., & Laanbroek, H. J. (2005). New DGGE strategies for the analyses of methanotrophic microbial communities using different combinations of existing 16S rRNA-based primers. FEMS Microbiology Ecology, 52(2), 163-174. https://doi.org/10.1016/j.femsec.2004.11.004
    • Mooij, W. M., Hülsmann, S., De Senerpont Domis, L. N., Nolet, B. A., Bodelier, P. L. E., Boers, P., Pires, L. M. D., Gons, H. J., Ibelings, B. W., Noordhuis, R., Portielje, R., Wolfstein, K., Wolfstein, R., & Lammens, E. H. R. R. (2005). The impact of climate change on lakes in the Netherlands: a review. Aquatic Ecology, 39(4), 381-400. https://doi.org/10.1007/s10452-005-9008-0
    • 2004

    • Kemnitz, D., Chin, K-J., Bodelier, P. L. E., & Conrad, R. (2004). Community analysis of methanogenic archaea within a riparian flooding gradient. Environmental Microbiology, 6(5), 449-461. https://doi.org/10.1111/j.1462-2920.2004.00573.x
    • Bodelier, P. L. E., & Laanbroek, H. J. (2004). Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiology Ecology, 47(3), 265-277. https://doi.org/10.1016/S0168-6496(03)00304-0
    • 2003

    • Bodelier, P. L. E. (2003). Interactions between oxygen-releasing roots and microbial processes in flooded soils and sediments. In H. De Kroon, & E. J. W. Visser [Eds.], Root Ecology (pp. 331-362). (Ecological Studies). Springer.
    • 2000

    • Bodelier, P. L. E., Hahn, A. P., Arth, I. R., & Frenzel, P. (2000). Effects of ammonium-based fertilisation on microbial processes involved in methane emission from soils planted with rice. Biogeochemistry, 51(3), 225-257. https://doi.org/10.1023/A:1006438802362
    • Bodelier, P. L. E., Roslev, P., Henckel, T., & Frenzel, P. (2000). Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature, 403(6768), 421-424. https://doi.org/10.1038/35000193
    • 1998

    • Kowalchuk, G. A., Bodelier, P. L. E., Heilig, G. H. J., Stephen, J. R., & Laanbroek, H. J. (1998). Community analysis of ammonia-oxidising bacteria, in relation to oxygen availability in soils and root-oxygenated sediments, using PCR, DGGE and oligonucleotide probe hybridisation. FEMS Microbiology Ecology, 27(4), 339-350. https://doi.org/10.1111/j.1574-6941.1998.tb00550.x
    • Bodelier, P. L. E., Duyts, H., Blom, C. W. P. M., & Laanbroek, H. J. (1998). Interactions between nitrifying and denitrifying bacteria in gnotobiotic microcosms planted with the emergent macrophyte Glyceria maxima. FEMS Microbiology Ecology, 25(1), 63-78. https://doi.org/10.1111/j.1574-6941.1998.tb00460.x
    • 1997

    • Bodelier, P. L. E., Wijlhuizen, A. G., Blom, C. W. P. M., & Laanbroek, H. J. (1997). Effects of photoperiod on growth of and denitrification by Pseudomonas chlororaphis in the root zone of Glyceria maxima, studied in a gnotobiotic microcosm. Plant and Soil, 190(1), 91-103. https://doi.org/10.1023/A:1004212814097
    • Bodelier, P. L. E. (1997). Nitrification and denitrification in the root zone of Glyceria maxima "The plant gives... the plant takes" (PhD Thesis). Katholieke Universiteit Nijmegen.
    • Bodelier, P. L. E., & Laanbroek, H. J. (1997). Oxygen uptake kinetics of Pseudomonas chlororaphis grown in glucose- or glutamate-limited continuous cultures. Archives of Microbiology, 167(6), 392-395. https://doi.org/10.1007/s002030050460
    • 1996

    • Bodelier, P. L. E., Libochant, J. A., Blom, C. W. P. M., & Laanbroek, H. J. (1996). Dynamics of nitrification and denitrification in root- oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats. Applied and Environmental Microbiology, 62(11), 4100-4107. http://aem.asm.org/content/62/11/4100.abstract
    • 1994

    • Laanbroek, R., Bodelier, P. L. E., & Gerards, S. (1994). Oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed continuous cultures at different oxygen concentrations. Archives of Microbiology, 161(2), 156-162. https://doi.org/10.1007/BF00276477
    • 1991

    • Engelaar, W. M. H. G., Bodelier, P. L. E., Laanbroek, R., & Blom, C. W. P. M. (1991). Nitrification in the rizosphere of a flooding-resistant and a flooding-non-resistant Rumex species under drained and waterlogged conditions. FEMS Microbiology Ecology, 86(1), 33-42. https://doi.org/10.1111/j.1574-6968.1991.tb04793.x

      2014

    • Heijboer, A., Kowalchuk, G., Bodelier, P., Bloem, J., Jousset, A., & De Ruiter, P. C. (2014). Linking microbial diversity to the functioning of soil food webs. Nieuwsbrief Onderzoeksprogramma Biodiversiteit Werkt, 2014, 13-16. http://www.nwo.nl/onderzoek-en-resultaten/programmas/onderzoeksprogramma+biodiversiteit+werkt/Nieuwsbrief?r19_r1_r1_r1:u_u_i_d=c47dc799-8193-441d-b609-3cd3865cf315
    • 2011

    • Bodelier, P. L. E., & Bakker, E. S. (2011). Nieuw broeikasgaslek ontdekt: ganzenvraat in wetlands en het broeikaseffect. Mens en Vogel, 49, 32-41.
    • 2010

    • Bodelier, P. L. E. (2010). Bacteriën ruimen methaan op Doorbraak naar klimaatvriendelijke melkveehouderij. Conceptwijzer Innovatienetwerk. http://innovatienetwerk.onlinetouch.nl/119
    • Bodelier, P. L. E. (2010). Turf Zuivert de koeienstal. Nederlands Dagblad.
      Editorial board member Applied and Environmental Microbiology (2000 - current)

      Editorial board member ISME Journal (2012 - current)

      Member of the Works Council (Ondernemingsraad) of the KNAW (2012 - current)

      Chairman of the NIOO personnel representative committee (2012 - current)

      Section Editor Plant and Soil (2012 - current)

      Specialty Chief Editor Frontiers in Terrestrial Microbiology (2015 - current)

    Contact

    +31 (0)317 473 485

    Droevendaalsesteeg 10
    6708 PB Wageningen 
    +31 (0)317 47 34 00

    Postbus 50 
    6700 AB Wageningen

    P.Bodelier@nioo.knaw.nl

    Contact Form

    Paul Bodelier
    CAPTCHA
    Deze vraag is om te controleren dat u een mens bent, om geautomatiseerde invoer (spam) te voorkomen.

    • KNAW
    • intranet
    • privacy statement
    • login

    NIOO KNAW