Raúl Ochoa-Hueso

Dr. Raúl Ochoa-Hueso PhD

Honorary Fellow


Droevendaalsesteeg 10
6708 PB Wageningen

+31 (0) 317 47 34 00

The Netherlands


I study the effects of global change on the biodiversity of terrestrial ecosystems and their functioning. I am also interested in the concept of coupling to understand the myriad of interconnections that allow the maintenance of functional ecosystems.


I am an ecosystem ecologist with extensive experience researching about the consequences of human impacts on biogeochemical processes, biodiversity, and the assembly of communities in terrestrial ecosystems. Currently, I am a Ramón y Cajal researcher at the University of Cádiz, Spain, where I lead the "Ecosystem Ecology Lab" (https://ecosystemsecology.com/). The laboratory seeks to answer basic questions on how ecosystems function in a context of global change and develop applied nature-based strategies to stop or even reverse impacts, particularly in the context of managed ecosystems such as grasslands and agroecosystems like vineyards. 



Peer-reviewed publicaties

  • Trends in Plant Science

    Moving towards the ecological intensification of tree plantations

    Susana Gómez-González, Maria Paniw, José Luis Blanco-Pastor, Ana I. García-Cervigón, Oscar Godoy, José M. Herrera, Antonio Lara, Alejandro Miranda, Fernando Ojeda, Raul Ochoa-Hueso

    The growing demand for timber and the boom in massive tree-planting programs could mean the spreading of mismanaged tree plantations worldwide. Here, we apply the concept of ecological intensification to forestry systems as a viable biodiversity-focused strategy that could be critical to develop productive, yet sustainable, tree plantations. Tree plantations can be highly productive if tree species are properly combined to complement their ecological functions. Simultaneously considering soil biodiversity and animal-mediated biocontrol will be critical to minimize the reliance on external inputs. Integrating genetic, functional, and demographic diversity across heterogeneous landscapes should improve resilience under climate change. Designing ecologically intensified plantations will mean breaking the timber productivity versus conservation dichotomy and assuring the maintenance of key ecosystem services at safe levels.

  • Journal of Applied Ecology

    Long-term recovery of above- and below-ground interactions in restored grasslands after topsoil removal and seed addition

    Monika Carol Resch, Martin Schütz, Raul Ochoa-Hueso, Nina Buchmann, Beat Frey, Ulrich Graf, Wim H. van der Putten, Stephan Zimmermann, Anita C. Risch

    Evaluation of restoration activities is indispensable to assess the extent to which targets have been reached. Usually, the main goal of ecological restoration is to restore biodiversity and ecosystem functioning, but validation is often based on a single indicator, which may or may not cope with whole-ecosystem dynamics. Network analyses are, however, powerful tools, allowing to examine both the recovery of various biotic and abiotic properties and the integrated response at community and ecosystem level. We used restoration sites where topsoil was removed from former intensively managed grassland and seeds were added. These sites were between 3 and 32 years old. We assessed how plants, soil biota, soil properties and correlation-based interactions between biotic communities and their abiotic environment developed over time and compared the results with (i) intensively managed (not restored), and (ii) well-preserved targeted semi-natural grasslands. Plant, nematode, fungal and prokaryotic diversity and community structures of the restored grasslands revealed clear successional patterns and followed similar trajectories towards targeted semi-natural grasslands. All biotic communities reached targeted diversity levels no later than 18 years post-restoration. Ecological networks of intensively managed and short-term (~4 years) restored grasslands were less tightly connected compared to those found in mid- and long-term (~18–30 years) restored and target grasslands. Restoration specifically enhanced interactions among biotic communities, but reduced interactions between biotic communities and their abiotic environment as well as interactions among abiotic properties in the short- and mid-term. Synthesis and applications: Overall, our study demonstrated that topsoil removal and seed addition were successful in restoring diverse, tightly coupled and well-connected biotic communities above- and below-ground similar to those found in the semi-natural grasslands that were restoration targets. Network analyses proved to be powerful in examining the long-term re-establishment of functionally connected biotic communities in restored ecosystems. Thus, we provide an approach to holistically assess restoration activities by notably considering the complexity of ecosystems, much in contrast to most traditional approaches.

  • One Earth

    Ecosystem coupling

    Raul Ochoa-Hueso, Manuel Delgado-Baquerizo, Anita C. Risch, Maarten Schrama, Elly Morrien, S. Henrik Barmentlo, Stefan Geisen, Emilia Hannula, Monika Carol Resch, Basten Snoek, Wim H. van der Putten

    Global change frequently disrupts the connections among species, as well as among species and their environment, before the most obvious impacts can be detected. Therefore, we need to develop a unified conceptual framework that allows us to predict early ecological impacts under changing environments. The concept of coupling, defined as the multiple ways in which the biotic and abiotic components of ecosystems are orderly connected across space and/or time, may provide such a framework. Here, we operationally define the coupling of ecosystems based on a combination of correlational matrices and a null modeling approach. Compared with null models, ecosystems can be (1) coupled; (2) decoupled; and (3) anticoupled. Given that more tightly coupled ecosystems displaying higher levels of internal order may be characterized by a more efficient capture, transfer, and storage of energy and matter (i.e., of functioning), understanding the links between coupling and functioning may help us to accelerate the transition to planetary-scale sustainability. This may be achieved by promoting self-organized order.

  • Environmental Science and Pollution Research

    Nitrogen deposition reduces the cover of biocrust-forming lichens and soil pigment content in a semiarid Mediterranean shrubland

    Biocrusts are key drivers of the structure and functioning of drylands and are very sensitive to disturbance, including atmospheric nitrogen (N) deposition. We studied the impacts of simulated N deposition on biocrust community composition and soil photosynthetic and photoprotective pigment content after five years of N application in a European semiarid Mediterranean shrubland. The experiment consisted in six experimental blocks with four plots, each receiving 0, 10, 20, or 50 kg NH4NO3-N ha−1 year−1 + 6–7 kg N ha−1 year−1 background. After 5 years of N application, total lichen cover decreased up to 50% compared to control conditions and these changes were only clearly evident when evaluated from a temporal perspective (i.e. as the percentage of change from the first survey in 2008 to the last survey in 2012). In contrast, moss cover did not change in response to N, suggesting that biocrust community alterations operate via species- and functional group-specific effects. Interestingly, between-year variations in biocrust cover tracked variations in autumnal precipitation, showing that these communities are more dynamic than previously thought. Biocrust species alterations in response to N were, however, often secondary when compared to the role of ecologically relevant drivers such as soil pH and shrub cover, which greatly determined the composition and inter-annual dynamics of the biocrust community. Similarly, cyanobacterial abundance and soil pigment concentration were greatly determined by biotic and abiotic interactions, soil pH for pigments, and organic matter content and shrub cover for cyanobacteria. Biocrusts, and particularly the lichen component, are highly sensitive to N deposition and their responses to pollutant N can be best understood when evaluated from a temporal and multivariate perspective, including impacts mediated by interactions with biotic and abiotic drivers.