Skip to main content
  • Nederlands
  • English

Internet search

Menu
  • What's new
    • News
    • Press releases
    • Calendar
  • About us
    • Who we are
    • Our building
    • Our history
  • Research
    • Publications
    • Research themes
    • Datasets
    • Facilities
  • Departments
    • Animal Ecology
    • Aquatic Ecology
    • Microbial Ecology
    • Terrestrial Ecology
    • Other
  • Themes
    • Chemical ecology
    • Disease ecology
    • Eco-evolutionary dynamics
    • Ecological epigenetics
    • Global environmental change
    • Microbiomes
    • Restoration ecology
  • Society
    • Relevance to society
    • Citizen science projects
    • Educational information
  • Vacancies
  • Contact
    • Address & route
    • Staff
Marion  Meima-Franke's picture

Ing. Marion Meima-Franke

Laboratory Assistant

Microbial Ecology


Research themes
  • Chemical ecology
  • Global environmental change

  • Research expertise
  • Flowcytometry
  • Molecular biology
  • microbiology (cultivation of methanotrophic bacteria)

  • Page last updated: 14-09-2020
    • CV
    • Groups
    • Other Projects
    • Peer-reviewed publications
    • Popular-scientific publications
    • Ancillary positions

    Ing. Marion Meima-Franke (1969) graduated in 1993 as a research technician in medical biochemistry at the Hogeschool Enschede.

    She worked for 4 years in two different jobs at the Rijksuniversiteit Groningen. In her first job, she tried to accelerate the ripening time of cheese, with the help of genetically modified strains. The second job (in collaboration with the Academic Hospital of Groningen) dealt with a cardiac disease called atrial fibrillation (AF).

    After Groningen, she worked for two years as a research technician at the University of Washington, Seattle, USA. Here, she worked on two projects dealing with expression of genes involved in C1 metabolism in 1) pmmo genes, and 2) AM1 (mox genes).

    In March 2000, she joined the NIOO-KNAW-Centre for Limnology, where she worked together with Dr. Ingmar Janse and Dr. Gabriël Zwart on the Dynatox project. This project aimed to provide insight into dynamics and toxin production of potentially toxic cyanobacteria in a few Dutch lakes as well as to investigate conditions that influence growth and toxin production.

    SInce 2003, she has worked as a lab assistant for Dr. P.L.E. Bodelier on a variety of projects involving methane oxidizing bacteria.

    In 2017 the NIOO invested in a new flowsorter, the BD Influx. She is trained to use this flowsorter on behalf of her departement Microbial Ecology.

    Bodelier Group
    Rationale Microbial communities are at the very basis of life on earth, catalyzing biogeochemical reactions driving global nutrient cycles. Thereby, microbes...Read more
    Molecular Lab
    Read more
    Microbiology Lab
    Read more

    Functional Ecology of methane oxidizing bacteria

    Methane oxidizing bacteria (MOB) utilize methane as their carbon and energy source. They perform this process in many ecosystems (soils, sediments lakes, permafrost etc) thereby reducing the emission of this greenhouse gas to the atmosphere. We study MOB in the lab as well as in the field. One of the most recent findings was the strong positive stimulation of MOB by other non-methanotrophic bacteria mediated by volatile compounds. We used special incubations chambers and a volatolomics approach to perform these confrontation assays. We are performing experiments to verify mechanisms of these interactions, but results indicate an as yet unexplored mechanisms of control of major biogeochemical cycles. The work on methane consumption among others, aims at assessing feedbacks of climate change on atmospheric composition and is part of the NIOO theme Global Change. 


    Caption

      2020

    • Samad, M. S., Lee, H. J., Cerbin, S., Meima-Franke, M., & Bodelier, P. (2020). Niche Differentiation of Host-associated Pelagic Microbes and Their Potential Contribution to Biogeochemical Cycling in Artificially Warmed Lakes. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00582
    • 2019

    • van der Waals, M., Plugge, C. M., Meima-Franke, M., de Waard, P., Bodelier, P. L. E., Smidt, H., & Gerritse, J. (2019). Ethyl tert-butyl ether (EtBE) degradation by an algal-bacterial culture obtained from contaminated groundwater. Water Research, 148(January), 314-323. https://doi.org/10.1016/j.watres.2018.10.050
    • Ho, A., Lee, H. J., Reumer, M. R., Meima-Franke, M., Raaijmakers, C. E., Zweers, A. J., De Boer, W., van der Putten, W. H., & Bodelier, P. L. E. (2019). Unexpected role of canonical aerobic methanotrophs in upland agricultural soils. Soil Biology & Biochemistry, 131(April), [1-8]. https://doi.org/10.1016/j.soilbio.2018.12.020
    • 2018

    • Krause, S., Meima-Franke, M., Veraart, A. J., Ren, G., Ho, A., & Bodelier, P. L. E. (2018). Environmental legacy contributes to the resilience of methane consumption in a laboratory microcosm system. Scientific Reports, 9, [8862]. https://doi.org/10.1038/s41598-018-27168-9
    • Veraart, A. J., Garbeva, P. V., van Beersum, F., Ho, A., Hordijk, C. A., Meima-Franke, M., Zweers, A. J., & Bodelier, P. L. E. (2018). Living apart together – Bacterial volatiles influence methanotrophic growth and activity. ISME Journal, 12, 1163-1166. https://doi.org/10.1038/s41396-018-0055-7
    • van Kruistum, H., Bodelier, P. L. E., Ho, A., Meima-Franke, M., & Veraart, A. J. (2018). Resistance and Recovery of Methane Oxidizing Communities depends on Stress Regime and History. Frontiers in Microbiology, 9, [01714]. https://doi.org/10.3389/fmicb.2018.01714
    • 2015

    • Kim, S. Y., Veraart, A., Meima-Franke, M., & Bodelier, P. (2015). Combined effects of carbon, nitrogen and phosphorus on CH4 production and denitrification in wetland sediments. Geoderma, Online, 354-361. https://doi.org/10.1016/j.geoderma.2015.03.015
    • Krause, S., Niklaus, P. A., Morcillo, S. B., Meima-Franke, M., Lüke, C., Reim, A., & Bodelier, P. L. E. (2015). Compositional and functional stability of aerobic methane consuming communities in drained and rewetted peat meadows. FEMS Microbiology Ecology, 91(11), [fiv119]. https://doi.org/10.1093/femsec/fiv119
    • Ho, A., El-Hawwary, A. H. M., Kim, S. Y., Meima-Franke, M., & Bodelier, P. (2015). Manure-associated stimulation of soil-borne methanogenic activity in agricultural soils. Biology and Fertility of Soils, 51(4), 511-516. https://doi.org/10.1007/s00374-015-0995-2
    • Robroek, B. J. M., Jassey, V. E. J., Kox, M. A. R., Berendsen, R. L., Mills, R. T. E., Cécillon, L., Puissant, J., Meima-Franke, M., Bakker, P. A. H. M., & Bodelier, P. (2015). Peatland vascular plant functional types affect methane dynamics by altering microbial community structure. Journal of Ecology, 103(4), 925-934. https://doi.org/10.1111/1365-2745.12413
    • Ho, A., Reim, A., Kim, S. Y., Meima-Franke, M., Termorshuizen, A. J., De Boer, W., Van der Putten, W. H., & Bodelier, P. L. E. (2015). Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application. Global Change Biology, 21(10), 3864-3879. https://doi.org/10.1111/gcb.12974
    • 2014

    • Pan, Y., Abell, G. C. J., Bodelier, P. L. E., Meima-Franke, M., Sessitsch, A., & Bodrossy, L. (2014). Remarkable recovery and colonization behaviour of methane oxidizing bacteria in soil after disturbance is controlled by methane source only. Microbial Ecology, 68(2), 259-270. https://doi.org/10.1007/s00248-014-0402-9
    • 2013

    • Bodelier, P. L. E., Meima-Franke, M., Hordijk, C. A., Steenbergh, A. K., Hefting, M. M., Bodrossy, L., von Bergen, M., & Seifert, J. (2013). Microbial minorities modulate methane consumption through niche partitioning. ISME Journal, 7(11), 2214-2228. https://doi.org/10.1038/ismej.2013.99
    • Krause, S., Meima-Franke, M., Hefting, M. M., & Bodelier, P. L. E. (2013). Spatial patterns of methanotrophic communities along a hydrological gradient in a riparian wetland. FEMS Microbiology Ecology, 86(1), 59-70. https://doi.org/10.1111/1574-6941.12091
    • 2012

    • Wang, J., Krause, S., Muyzer, G., Meima-Franke, M., Laanbroek, H. J., & Bodelier, P. L. E. (2012). Spatial patterns of iron- and methane-oxidizing bacterial communities in an irregularly flooded, riparian wetland. Frontiers in Microbiology, 3, [64]. https://doi.org/10.3389/fmicb.2012.00064
    • Bodelier, P. L. E., Bär-Gilissen, M. J., Meima-Franke, M., & Hordijk, C. A. (2012). Structural and functional response of methane-consuming microbial communities to different flooding regimes in riparian soils. Ecology and Evolution, 2(1), 106-127. https://doi.org/10.1002/ece3.34
    • 2011

    • Wang, J., Vollrath, S., Behrends, T., Bodelier, P. L. E., Muyzer, G., Den Oudsten, F., Meima-Franke, M., Cappellen, P., & Laanbroek, H. J. (2011). Distribution and diversity of gallionella-like neutrophilic iron oxidizers in a tidal freshwater marsh. Applied and Environmental Microbiology, 77(7), 2337-2344. https://doi.org/10.1128/AEM.02448-10
    • 2009

    • Bodelier, P. L. E., Kamst, M., Meima-Franke, M., Stralis-Pavese, N., & Bodrossy, L. (2009). Whole community genome amplification (WCGA) leads to compositional bias in methane oxidizing communities as assessed by pmoA based microarray analyses and QPCR. Environmental Microbiology, 1(5), 434-441. https://doi.org/10.1111/j.1758-2229.2009.00066.x
    • 2005

    • Bodelier, P. L. E., Meima-Franke, M., Zwart, G., & Laanbroek, H. J. (2005). New DGGE strategies for the analyses of methanotrophic microbial communities using different combinations of existing 16S rRNA-based primers. FEMS Microbiology Ecology, 52(2), 163-174. https://doi.org/10.1016/j.femsec.2004.11.004

    Contact

    +31 (0)317 473 518

    Droevendaalsesteeg 10
    6708 PB Wageningen 
    +31 (0)317 47 34 00

    Postbus 50 
    6700 AB Wageningen

    M.Meima@nioo.knaw.nl

    Contact Form

    • KNAW
    • intranet
    • privacy statement
    • login

    NIOO KNAW