Long-term Ca-based amendments impact on microbiome and N processes in the rhizosphere and soil in tropical no-till intercropping system
Unsustainable agricultural management practices such as non-conservationist tillage and overuse of fertilizers result in soil acidity and, in turn, soil degradation due to reduced carbon (C) concentrations and nutrient availability and increased aluminum toxicity. Application of lime (L) and phosphogypsum (PG) can overcome these constraints and improve soil quality, but the long-term effects of these amendments on both abiotic and biotic soil properties are not known, particularly when applied in combination. Here, we evaluate the effects of L (acidity corrective), PG (soil conditioner), and their combination (LPG) on soil organic matter (SOM) transformations, soil chemical and physical properties, microbiome assembly, N uptake by intercropped plants, maize yield, archaeal and bacterial abundances, and N cycle genes in the maize and ruzigrass rhizospheres in a long-term field experiment in tropical soil with a no-till maize and forage ruzigrass intercropping system.
Experts
-
-
Letusa Momesso
PhD Candidate , Microbial Ecology
- Long-term no-till intercropping system, amendments that neutralize acidity of the soil play a crucial role in increasing C concentrations (labile and stable fractions) and soil physicochemical attributes, especially considering the synergism between L and PG.
- Soil amendments are an important alternative for increasing the efficiency of nitrogen use in no-till agricultural systems.