Zoeken
Filteren op
Type
Labels
Dossiers
Thema's
Afdelingen
Taal
Active filters
7 zoekresultaten
Zoekresultaten
-
Harnessing the rhizosphere microbiome to enhance plant productivity
In Bio-Based Economy, plant materials are an essential resource for new industrial and sustainable applications. To ensure the production of sufficient plant biomass there is a need of mineral fertilizers. However, intensive fertilization causes leaching and run-off of nutrients, reduction in biodiversity, production of greenhouse gasses, global warming and changes in soil pH leading to environmental degradation. A key challenge is to intensify agricultural production methods in a way that minimizes harmful environmental effects of fertilizers. Therefore, there is an urgent need for new strategies that optimize plant growth and minimize abiotic and biotic factors that adversely affect plant growth and quality. The plant microbiome, i.e. the collective microbial communities associated with plants, harbors various fungal and bacterial genera that have beneficial effects on plant growth and health. Several bacterial genera promote plant growth and induce systemic resistance in plants against pathogens as well as insect pests. Recent 'omics'-based studies revealed that specific rhizobacteria cause substantial transcriptional changes in plants, leading to elevated levels of specific plant genes expression. Brazilian sugarcane production system is being developed towards to sustainable manner by recycling straw and vinasse (byproduct of ethanol industry), which combined practices allow less mineral fertilizers to be added into soil. In addition, the use of beneficial bacteria, such as plant growth promoting bacteria (PGPB) isolated from sugarcane rhizosphere has shown to increase plant growth and health under controlled situation. However, detailed investigation and fundamental understanding of the effect of these PGPB in different sugarcane genotypes in different soils containing different microbial community are urgent need. Therefore, this proposal aims to: (i) determine the effect of different soil microbial community composition on sugarcane growth inoculated with PGPB; (ii) identify the PGPB traits and genes involved in plant growth promotion; (iii) identify the plant traits and genes involved in plant growth promotion induced by PGPB. Potential applications of this proposal will be (i) the identified PGPB traits and genes to ensure or enhance plant biomass, yield and quality; (ii) the identified genotype-specific genes induced by PGPB responsible for enhancing plant productivity. The proposed project will provide new insights into mechanisms, traits and genes underlying PGPB-plant interactions and will yield new leads and tools to ensure/enhance sugarcane biomass for bio-based economy -
Restoring degraded lands with microbial inoculants
Land degradation usually leads to a reduction in soil fertility, decline of plant productivity, and loss of biodiversity. Introducing beneficial microbial inoculants to degraded lands represents a promising and sustainable strategy. The aim of this project is to reveal the ecological roles of microbial inoculants and soil-resident microbial community in restoring both belowground biodiversity and aboveground productivity in the degraded land. -
REPHORM - REcycled PHOsphorus Resolved by Microbes
Sufficient Phosphorus (P) and Iron (Fe) supply is essential for crop production. Most of the P and Fe in soil is not readily available for the plant, making agriculture depending on inorganic fertilizers mainly derived from depletable resources. An alternative to this unsustainable practice is to use recycled compounds recovered during wastewater treatment. This project focuses on the use of the two recycled compounds struvite (MgNH4PO4·6H2O) and vivianite (Fe3(PO4)2·8H2O) which are both insoluble and hard to synchronize with the nutrient needs during early plant development. To increase efficient nutrient release of these recycled sources, we propose the use of microbes that can solubilize P and release siderophore, both recognized traits of plant growth promoting microbes. Several plant growth-promoting microbes have been isolated, but their transfer to agriculture, so far, resulted in an inconsistent success, due to competition or resistance of the resident soil microbiome to inoculants. This project will circumvent this challenge by steering the local microbiome with the addition of recycled nutrients and will further optimize the microbiome by microbial community breeding. Overall, this project will focus on identifying microbial community members with struvite and vivianite solubilizing function, optimizing these communities, determining the role of these communities on increasing the nutrient release as well as monitoring the recruitment of these beneficial microbes in the rhizosphere and the effect on plant growth. -
Physiological and ecological strategies of Acidobacteria
Acidobacteria is among the most abundant phylum in soils, however, their physiological capabilities and co-occurrence with soil inhabitants are still unknown. -
Farming microbial community for plant probiotic - MicroProFarm
A current challenge for modern agriculture is to meet the food production needs for an increasing global population while improving resource use efficiency and attenuating impacts on human health and environment. In order to maximize reliability and stability in agriculture, optimization of crop management and resource use efficiency have been considered the best approaches for a sustainable increase of crop yields under variable agro-ecological conditions, environments and years. For this purpose, one interesting and sustainable method is the use of natural plant biostimulants, a diverse class of products and microorganisms that enhance plant growth and other plant parameters, such as flowering, fruit set, crop productivity and nutrient use efficiency. In this context, several studies already demonstrated that plant biostimulants can induce morpho-anatomical, biochemical, physiological and molecular plant responses, not only improving crop productivity but also promoting protection against abiotic stresses, such as drought and salinity. Among the different biostimulant classes there are protein hydrolysates (PH), mixtures of polypeptides, oligopeptides and aminoacids originated from partially hydrolyzed animal and vegetal tissues. Even though the effect of PH were already observed in diverse crops, the mechanisms and behind their action are still scarcely studied, and their action can vary depending on their origin, characteristics, crop species, cultivars, growing conditions, time and mode of applications, among other parameters. The objective of this project is to evaluate the effect of protein hydrolysates in the growth, nutrient content and microbial communities of crops, if microbes are responsible for these effects, which are the mechanisms and if such effects are long-lasting. -
The complexity of asparagus root rot disease harbors the solution to beat it
KNAW funded research on the role of biointeractions in causing fungal virulence in asparagus. -
Microbial Farming to increase plant productivity
Plant-growth promoting microbes (PGPM) are a viable alternative to traditional fertilizers for enhancing plant productivity and improving soil quality without environmental pollution. The use of PGPM in agriculture has been hampered by a lack of reproducible results and the difficulty of transferring this technology to the field. This inconsistent success primarily reflects competition or resistance of the original soil microbiome to inoculants, as well as the negative effects of management practices such as fertilization on plant interactions with the soil microbiome and the efficiency of ecosystem services delivered by PGPM. We were the first to circumvent this problem under field conditions by manipulating the soil microbiome to successfully obtain consistent, positive effects of inoculated microbes on plant productivity (Cipriano et al., 2016;https://doi.org/10.1093/femsec/fiw197). However, the influence of the indigenous soil microbiome on plants remains largely unknown. We propose to investigate this tripartite, PGPM-plant-soil microbiome interaction in plant quality and productivity using state-of-the-art ‘omics’ and bioinformatics approaches to investigate facilitation (positive interactions) and competition (negative interactions) by both microbes and PGPM within the plant realized niche following gradients of both soil diversity and nutrient availability. This research will facilitate the development of innovative methods for agricultural and horticultural starting material production using PGPM for sustainable crop production by combining techniques to reduce nutrient input and enhance the efficiency and long-lasting effects of PGPM. This research proposal will integrate approaches to obtain a fundamental understanding of these tripartite interactions in a smart microbiome engineered plant production system for sustainable high-quality crop production.