Project
2015–Present
In Bio-Based Economy, plant materials are an essential resource for new industrial and sustainable applications. To ensure the production of sufficient plant biomass there is a need of mineral fertilizers. However, intensive fertilization causes leaching and run-off of nutrients, reduction in biodiversity, production of greenhouse gasses, global warming and changes in soil pH leading to environmental degradation. A key challenge is to intensify agricultural production methods in a way that minimizes harmful environmental effects of fertilizers. Therefore, there is an urgent need for new strategies that optimize plant growth and minimize abiotic and biotic factors that adversely affect plant growth and quality. The plant microbiome, i.e. the collective microbial communities associated with plants, harbors various fungal and bacterial genera that have beneficial effects on plant growth and health. Several bacterial genera promote plant growth and induce systemic resistance in plants against pathogens as well as insect pests. Recent 'omics'-based studies revealed that specific rhizobacteria cause substantial transcriptional changes in plants, leading to elevated levels of specific plant genes expression. Brazilian sugarcane production system is being developed towards to sustainable manner by recycling straw and vinasse (byproduct of ethanol industry), which combined practices allow less mineral fertilizers to be added into soil. In addition, the use of beneficial bacteria, such as plant growth promoting bacteria (PGPB) isolated from sugarcane rhizosphere has shown to increase plant growth and health under controlled situation. However, detailed investigation and fundamental understanding of the effect of these PGPB in different sugarcane genotypes in different soils containing different microbial community are urgent need. Therefore, this proposal aims to: (i) determine the effect of different soil microbial community composition on sugarcane growth inoculated with PGPB; (ii) identify the PGPB traits and genes involved in plant growth promotion; (iii) identify the plant traits and genes involved in plant growth promotion induced by PGPB. Potential applications of this proposal will be (i) the identified PGPB traits and genes to ensure or enhance plant biomass, yield and quality; (ii) the identified genotype-specific genes induced by PGPB responsible for enhancing plant productivity. The proposed project will provide new insights into mechanisms, traits and genes underlying PGPB-plant interactions and will yield new leads and tools to ensure/enhance sugarcane biomass for bio-based economy